If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-2x-583=0
a = 1; b = -2; c = -583;
Δ = b2-4ac
Δ = -22-4·1·(-583)
Δ = 2336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2336}=\sqrt{16*146}=\sqrt{16}*\sqrt{146}=4\sqrt{146}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{146}}{2*1}=\frac{2-4\sqrt{146}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{146}}{2*1}=\frac{2+4\sqrt{146}}{2} $
| 14=x/2-3 | | 7+(2)/(3)x=-1 | | 7-y=5y-13 | | F(-3)=7(2-x) | | 16.35+x=16.35 | | (16x+4)^2+36=100 | | n/5+7=42 | | 5q-8q=3 | | 14x-6=-2x+2 | | 19-20y=-y-19y+19 | | 3x+5-x=x+4+x+1 | | 1500=25000•0.03t | | 120=8(3v+6) | | z+3(z-17)=19 | | M-5÷2=3+m÷10-3 | | -n-4-n=2-3n | | Y=6x+3/2 | | 5x+9=6x-10 | | -1/4(12x-20)=5-(1-3x) | | -3x-7x=1+4-2 | | 5(e+8)=70 | | -4(x-8)+8-14=-2(×+15)+10 | | 114=3(3+5x) | | 8.25x=-66 | | -9(8-2y)=54 | | 2/5=-2/3x-1/2 | | -x+2x-3x+10x=2+5 | | 3b+4b-7b=24 | | x(3/4)-420=6x | | (2n+5)6n=6n(5+2n) | | 14d+12d+11d+18=-18 | | 3n+15=18 |